
The Yoneda Lemma

Theorem [The Yoneda Lemma] For any functor F : Cop → Set and any object X in C, natural transforma-
tions Hom(−, X)→ F (−) are in bijection with elements in F (X); i.e.,

Nat(Hom(−, X), F (−)) ∼= F (X).

The intuition to have in mind here is that we can determine an object completely by testing all possible
maps into it; i.e., in a category, X ∼= Y if and only if Hom(−, X) ∼= Hom(−, Y ). (Indeed, this is a corollary
we will see later.) We have an intuition for this already (and should because the Yoneda Lemma is ubiquitous
throughout mathematics). As an example, many homeomorphism invariants in topology are of this form:

• X and Y have the same cardinality if and only if Hom({∗}, X) ∼= Hom({∗}, Y ) for {∗} the point space.
• X and Y have the same path connected components if and only if Hom(I,X) ∼= Hom(I, Y ) for I ⊆ R

an interval.
• X and Y have the same fundamental group if and only if Hom(S1, X) ∼= Hom(S1, Y )1.
• X and Y have the same higher homotopy groups if and only if Hom(Sn, X) ∼= Hom(Sn, Y )2.

We will also explore some interesting applications of Yoneda after its proof.

Proof of the Yoneda Lemma. To show Nat(Hom(−, X), F (−)) ∼= F (X), we start with an element t ∈ F (X),
noting F (X) is a set as F : Cop → Set. We must produce a natural transformation Hom(−, X) → F (−).
Recall that a natural transformation η : G → H for functors G,H : A → B is a collection of morphisms
ηA : G(A)→ H(A) for all A objects of A such that for any arrow f : A→ B in A, we have commutativity
of

G(A) G(B)

H(A) H(B)

G(f)

ηA ηB

H(f)

To produce a natural transformation, we need to describe ηA : Hom(A,X)→ F (A) for an arbitrary A, and
then check that the requisite diagram commutes. We declare ηA(ϕ : A→ X) to be (Fϕ)(t). Since ϕ : A→ X
and F is contravariant, Fϕ : F (X)→ F (A), and t ∈ F (X) 7→ (Fϕ)(t) ∈ F (A). Does the requisite diagram
commute? The diagram is is, for f : A→ B,

Hom(B,X) Hom(A,X)

F (B) F (A)

Hom(f,X)

ηB ηA

Ff

Taking a map ψ : B → X ∈ Hom(B,X), we see that

ψ ψf

Hom(B,X) Hom(A,X)

F (B) F (A)

(Fψ)(t) (Ff ◦ Fψ)(t) F (ψf)(t)

Hom(f,X)

ηB ηA

Ff

1sorta
2sorta
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Now, we need to take a natural transformation η : Hom(−, X)→ F (−) and produce an element t ∈ F (X).
To do this in a compatible way with the work above, the thing to do must be to map η to ηX(idX). See that
ηX takes idX : X → X and maps it to something in F (X); call its image t = ηX(idX).

To see that these assignments are inverses of each other, observe that

t 7→ η such that ηA(ϕ : A→ X) = F (ϕ)(t)

7→ ηX(idX) = F (idX)(t) = idF (X)(t) = t, and

η 7→ ηX(idX)

7→µ such that µA(ψ : A→ X) = F (ψ)(ηX(idX)), and also

η satisfies ηA(ψ : A→ X) = F (ψ)(ηX(idX)),

since we claim η is uniquely determined by ηX(idX). To see this, let ψ : A→ X and observe the commutative
diagram

Hom(X,X) Hom(A,X)

F (X) F (A)

Hom(ψ,X)

ηX ηA

Fψ

This diagram commutes because η is a natural transformation. Observe that if we chase the element
idX ∈ Hom(X,X), we see that

idX idX ◦ψ = ψ

Hom(X,X) Hom(A,X)

F (X) F (A)

ηX(idX) F (ψ)(ηX(idX)) ηA(ψ)

Hom(ψ,X)

ηX ηA

Fψ

Hence the bijection Nat(Hom(−, X), F (−)) ∼= F (X).

Let’s explore the corollaries which are used to understand Yoneda.

Corollary 1 The Yoneda embedding, Y : C → SetC
op

, is a fully faithful functor.

Proof. Recall the notation: SetC
op

is the category of functors Cop → Set with arrows natural transformations
between functors. The Yoneda embedding takes A in C and sends it to Y (A) = Hom(−, A), and takes
ϕ : A→ B in C and sends it to Y (ϕ) = ϕ∗ : Hom(−, A) → Hom(−, B), which we know to compute as
ϕ∗ = ϕ ◦ −. To show Y is fully faithful, we must show that the assignment

HomC(A,B)→ HomSetC
op (Y (A), Y (B))

given by ϕ 7→ ϕ∗ is injective (faithful) and surjective (full).
To see that the assignment is injective, notice that if ϕ and ψ mapping A→ B are distinct, then ϕ∗ and

ψ∗ are distinct, since we may detect so by realizing

ϕ∗(idA) = ϕ ◦ idA = ϕ 6= ψ = ψ ◦ idA = ψ∗(idA).

To see that the assignment is surjective, let η : Hom(−, A)→ Hom(−, B) ∈ HomSetC
op (Y (A), Y (B)). We

need to show that η is of the form ϕ∗ for some ϕ : A → B. Explicitly, for ϕ∗ = η, we must show that for
every object C in C and arrow ψ : C → A, we have ηC(ψ) = ϕ∗(ψ) = ϕ ◦ ψ. We claim the map ϕ : A → B
given by ϕ = ηA(idA) does the job. Indeed, observe that since η is a natural transformation, by definition,
for any objects C and D in C and any arrow ψ : C → D,
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Hom(D,A) Hom(C,A)

Hom(D,B) Hom(C,B)

ψ∗

ηD ηC

ψ∗

for ψ∗ = − ◦ ψ : Hom(D,−)→ Hom(C,−). Choosing D = A and chasing idA ∈ Hom(A,A), we see that

idA idA ◦ψ = ψ

Hom(A,A) Hom(C,A)

Hom(A,B) Hom(C,B)

ηA(idA) ηA(idA) ◦ ψ ηC(ψ)

ψ∗

ηA ηC

ψ∗

Now it is clear that if ϕ = ηA(idA), then for all C in C and ψ : C → A, we observe ηC(ψ) = ϕ ◦ ψ, as
desired.

In succinct terms, an object X is the same as its representable functor Hom(−, X).

Corollary 2 A ∼= B if and only if Hom(−, A) ∼= Hom(−, B).

Proof. Since Y (A) = Hom(−, A) is a functor, if A ∼= B, then Hom(−, A) ∼= Hom(−, B).
On the other hand, if Y (A) ∼= Y (B), then we claim since Y is fully faithful, that implies A ∼= B. Indeed,

observe:

Lemma Let F be a fully faithful functor. If F (A) ∼= F (B), then A ∼= B.

Proof. If f : F (A) → F (B) is an isomorphism with inverse f−1, then as F is fully faithful, there
exists a unique ϕ : A → B such that Fϕ = f . Similarly, there exists a unique ψ : B → A such that
Fψ = f−1. Thus,

idF (A) = f−1f = FψFϕ = F (ψϕ).

As F is fully faithful, ψϕ = idA, since F (idA) = idF (A). Similarly,

idF (B) = ff−1 = FϕFψ = F (ϕψ),

and ϕψ = idB . Thus, ϕ is an isomorphism with inverse ψ.

Hence, A ∼= B, as desired, and the proof is complete.

We now explore some applications and/or examples of the Yoneda Lemma.

Example 3 [Cayley’s Theorem] Every group G is isomorphic to a subgroup of the symmetric group acting
on G, SG.

Proof. We can express a group G as a category G with one object • and whose arrows are isomorphisms
corresponding to the group elements. Indeed, it is an exercise to show that the category axioms correspond
to the group axioms:

• Associativity of group elements is associativity of arrows.
• Existence of an identity e ∈ G is existence of an identity arrow id•.
• Existence of inverse elements is existence of inverse arrows, as each arrow is an isomorphism.
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An object in SetG
op

, i.e., a functor Gop → Set, sends • to a set X and sends an arrow (group element g)

to X → X defined by right multiplication by g. In particular, choosing F (−) = Hom(−, •) ∈ SetG
op

, the
Yoneda Lemma says that

Nat(Hom(−, •), F (−)) ∼= F (•)
Nat(Hom(−, •),Hom(−, •)) ∼= Hom(•, •).

The right side is, by definition, elements of the group G. Decoding the left side, we see that natural
transformations Hom(−, •)→ Hom(−, •) are some subset of G-equivariant functions G→ G. In particular,
they are the G-equivariant functions that are constructed from the elements of G, by Corollary 1. In
other words, Nat(Hom(−, •),Hom(−, •)) is the set of functions fg : G → G defined by fg(x) = xg; i.e., the
automorphisms of G that arise from g-multiplication. Hence Nat(Hom(−, •),Hom(−, •)) is a subgroup of
SG, all permutations on G, and by the Yoneda Lemma, is isomorphic to Hom(•, •) ∼= G.

Example 4 [Dedekind cuts] The real numbers can be constructed using Yoneda.

Proof. Let Q be conflated with the poset category whose objects are rational numbers and whose arrows are
given by the ordering ≤. (It is once again an easy exercise to see the poset axioms for ≤ are the category
axioms for →.) The Yoneda embedding

Y : Q→ SetQ
op

is given by Y (−) = Hom(−, q). In fact, we may narrow our focus, and rather than viewing Q as “enriched
over Set,” we may view it as “enriched over 2,” where 2 is the category with objects 0 and 1 and nontrivial
arrow 0 → 1. Recall that a category C is enriched over D if for all objects A and B in C, Hom(A,B) is in
D. In layman’s terms, often Hom-objects carry structure other than sets; they may be abelian groups, as in
the case of Ab-categories, for instance.

Hence the Yoneda embedding can be thought of as

Y : Q→ 2Qop

,

where the Hom-object Hom(r, s) = 1 if r ≤ s, and 0 if not; i.e., we simply indicate whether or not the
inequality is true.

The set Hom(−, q) = 1 is a Dedekind cut; the collection of all arrows x→ q is the set {x ∈ Q | x ≤ q}. By
Corollary 1, Hom(−, q) embeds in a full and faithful manner; i.e., we can define R to be the full subcategory
of 2Qop

for which all functors Qop → 2 are non-constant and cocontinuous, i.e., preserve colimits. In a poset,
a colimit is just a supremum, so R is the collection of suprema of sets {x < r}; i.e., the classical Dedekind
construction of R.
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